Vortex engine

The solar vortex engine prototype at Universiti Teknologi PETRONAS
The solar vortex engine prototype at Universiti Teknologi PETRONAS

The concept of a vortex engine or atmospheric vortex engine (AVE), independently proposed by Norman Louat [1] and Louis M. Michaud,[2] aims to replace large physical chimneys with a vortex of air created by a shorter, less-expensive structure. The AVE induces ground-level vorticity, resulting in a vortex similar to a naturally occurring landspout or waterspout.

An Australian experimental atmospheric vortex using smoke as the tracer. Geoffrey Wickham.

Michaud's patent claims that the main application is that the air flow through the louvers at the base will drive low-speed air turbines, generating twenty percent additional electric power from the heat normally wasted by conventional power plants. That is, the vortex engine's proposed main application is as a "bottoming cycle" for large power plants that need cooling towers.

The application proposed by Louat in his patent claims is to provide a less-expensive alternative to a physical solar updraft tower. In this application, the heat is provided by a large area of ground heated by the sun and covered by a transparent surface that traps hot air, in the manner of a greenhouse. A vortex is created by deflecting vanes set at an angle relative to the tangent of the outer radius of the solar collector. Louat estimated that the minimum diameter of the solar collector would need to be 44+ metres in order to collect "useful energy". A similar proposal is to eliminate the transparent cover.[3] This scheme would drive the chimney-vortex with warm seawater or warm air from the ambient surface layer of the earth. In this application, the application strongly resembles a dust devil with an air-turbine in the center.

Since 2000, Croatian researchers Ninic and Nizetic (from the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture University of Split) have also developed this technology[4] and patents.[5][6]

The solar research team at Universiti Teknologi PETRONAS (UTP), Malaysia, headed by Prof. Hussain H. Al-Kayiem, developed the first experimental prototype of a solar vortex power generation (SVPG) technology that uses solar energy as a heat source.[7] The basic prototype was then subjected to a series of developments and performance enhancements by integration with sensible thermal energy storage (TES) and modification in the design of the vortex generator. The team carried out and published an experimental evaluation, theoretical analysis, and computational simulations of the SVPG and compiled the findings in a book which summarizes the fundamentals of this technology.[8]

  1. ^ Louat's International Patent Application is PCT/AU99/00037. International publication number WO0042320 [1]
  2. ^ Michaud's U.S. Patent is US 2004/0112055 A1, "Atmospheric Vortex Engine"
  3. ^ Atmospheric Vortex Engine
  4. ^ Sandro Nizetic (2011). "Technical utilisation of convective vortices for carbon-free electricity production: A review". Energy. 36 (2): 1236–1242. doi:10.1016/j.energy.2010.11.021.
  5. ^ Ninic Patent is HRP20000385 (A2), published in 2002, title: "SOLAR POWER PLANT INCLUDING A GRAVITATIONAL AIR VORTEX" [2]
  6. ^ Nizetic Patent is WO2009060245, published in 2009, title: "SOLAR POWER PLANT WITH SHORT DIFFUSER" [3]
  7. ^ Al-Kayiem, Hussain H.; Mustafa, Ayad T.; Gilani, Syed I. U. (2018-06-01). "Solar vortex engine: Experimental modelling and evaluation". Renewable Energy. 121: 389–399. doi:10.1016/j.renene.2018.01.051. ISSN 0960-1481. S2CID 115355306.
  8. ^ "Solar Vortex Engine / 978-3-330-06672-4 / 9783330066724 / 3330066725". www.lap-publishing.com. Retrieved 2020-06-29.

Developed by StudentB